久久国产精品无码网站,在线天堂免费中文字幕,亚洲成年人av,全黄特一级,亚洲电影成人av99爱色,久久久性生活视频,91免费在线

數(shù)學(xué)解題方

時(shí)間:2025-11-28 23:18:58 好文 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)解題方法15篇(熱門(mén))

數(shù)學(xué)解題方法1

  數(shù)學(xué)填空題解題技巧

數(shù)學(xué)解題方法15篇(熱門(mén))

  數(shù)學(xué)填空題是一種只要求寫(xiě)出結(jié)果,不要求寫(xiě)出解答過(guò)程的客觀性試題,是中考數(shù)學(xué)中的三種?碱}型之一。它和選擇題同屬客觀性試題,它們有許多共同特點(diǎn):其形態(tài)短小精悍、跨度大、知識(shí)覆蓋面廣、考查目標(biāo)集中,形式靈活,答案簡(jiǎn)短、明確、具體,評(píng)分客觀、公正、準(zhǔn)確等。

  填空題的類(lèi)型一般可分為:完形填空題、多選填空題、條件與結(jié)論開(kāi)放的填空題。這說(shuō)明了填空題是數(shù)學(xué)中考命題重要的組成部分,它約占了整張?jiān)嚲淼娜种。因此,我們(cè)趥淇紩r(shí),既要關(guān)注這一新動(dòng)向,又要做好應(yīng)試的技能準(zhǔn)備。解題時(shí),要有合理的分析和判斷,要求推理、運(yùn)算的每一步驟都正確無(wú)誤,還要求將答案表達(dá)得準(zhǔn)確、完整。合情推理、優(yōu)化思路、少算多思將是快速、準(zhǔn)確地解答填空題的基本要求。

  解答填空題的基本策略是準(zhǔn)確、迅速、整潔。準(zhǔn)確是解答填空題的先決條件,填空題不設(shè)中間分,一步失誤,全題無(wú)分,所以應(yīng)仔細(xì)審題、深入分析、正確推演、謹(jǐn)防疏漏,確保準(zhǔn)確;迅速是贏得時(shí)間獲取高分的必要條件,對(duì)于填空題的答題時(shí)間,應(yīng)該控制在不超過(guò)20分鐘左右,速度越快越好,要避免“超時(shí)失分”現(xiàn)象的發(fā)生;整潔是保住得分的充分條件,只有把正確的答案整潔的'書(shū)寫(xiě)在答題紙上才能保證閱卷教師正確的批改,在網(wǎng)上閱卷時(shí)整潔顯得尤為重要。中考中的數(shù)學(xué)填空題一般是容易題或中檔題,數(shù)學(xué)填空題,絕大多數(shù)是計(jì)算型(尤其是推理計(jì)算型)和概念(性質(zhì))判斷型的試題,應(yīng)答時(shí)必須按規(guī)則進(jìn)行切實(shí)的計(jì)算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在“準(zhǔn)”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、數(shù)行結(jié)合法、等價(jià)轉(zhuǎn)化法等。

  方法解析

  一、直接法

  這是解填空題的基本方法,它是直接從題設(shè)條件出發(fā)、利用定義、定理、性質(zhì)、公式等知識(shí),通過(guò)變形、推理、運(yùn)算等過(guò)程,直接得到結(jié)果。它是解填空題的最基本、最常用的方法。使用直接法解填空題,要善于通過(guò)現(xiàn)象看本質(zhì),熟練應(yīng)用解方程和解不等式的方法,自覺(jué)地、有意識(shí)地采取靈活、簡(jiǎn)捷的解法。

  二、特殊化法

  當(dāng)填空題的結(jié)論唯一或題設(shè)條件中提供的信息暗示答案是一個(gè)定值時(shí),而已知條件中含有某些不確定的量,可以將題中變化的不定量選取一些符合條件的恰當(dāng)特殊值(或特殊函數(shù),或特殊角,圖形特殊位置,特殊點(diǎn),特殊方程,特殊模型等)進(jìn)行處理,從而得出探求的結(jié)論。這樣可大大地簡(jiǎn)化推理、論證的過(guò)程。

  三、數(shù)形結(jié)合法

  “數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微!睌(shù)學(xué)中大量數(shù)的問(wèn)題后面都隱含著形的信息,圖形的特征上也體現(xiàn)著數(shù)的關(guān)系。我們要將抽象、復(fù)雜的數(shù)量關(guān)系,通過(guò)形的形象、直觀揭示出來(lái),以達(dá)到“形幫數(shù)”的目的;同時(shí)我們又要運(yùn)用數(shù)的規(guī)律、數(shù)值的計(jì)算,來(lái)尋找處理形的方法,來(lái)達(dá)到“數(shù)促形”的目的。對(duì)于一些含有幾何背景的填空題,若能數(shù)中思形,以形助數(shù),則往往可以簡(jiǎn)捷地解決問(wèn)題,得出正確的結(jié)果。

  四、等價(jià)轉(zhuǎn)化法

  通過(guò)“化復(fù)雜為簡(jiǎn)單、化陌生為熟悉”,將問(wèn)題等價(jià)地轉(zhuǎn)化成便于解決的問(wèn)題,從而得出正確的結(jié)果。

數(shù)學(xué)解題方法2

  反證法在解答證明題目中會(huì)經(jīng)常用到,同學(xué)們認(rèn)真學(xué)習(xí)下面的解題方法。

  反證法

  反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

  反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的`,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。

  歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

  對(duì)于反證法解題方法的講解,相信可以很好的幫助同學(xué)們的學(xué)習(xí)工作,希望同學(xué)們認(rèn)真學(xué)習(xí),并很好的做好備戰(zhàn)考試的工作。

數(shù)學(xué)解題方法3

  1.“一拋物線上是否存在一點(diǎn),使之和另外三個(gè)定點(diǎn)構(gòu)成的四邊形面積最大的問(wèn)題”:

  由于該四邊形有三個(gè)定點(diǎn),從而可把動(dòng)四邊形分割成一個(gè)動(dòng)三角形與一個(gè)定三角形(連結(jié)兩個(gè)定點(diǎn),即可得到一個(gè)定三角形)的面積之和,所以只需動(dòng)三角形的面積最大,就會(huì)使動(dòng)四邊形的面積最大,而動(dòng)三角形面積最大值的求法及拋物線上動(dòng)點(diǎn)坐標(biāo)求法與7相同。

  2、“定四邊形面積的求解”問(wèn)題:

  有兩種常見(jiàn)解決的方案:

  方案(一):連接一條對(duì)角線,分成兩個(gè)三角形面積之和;

  方案(二):過(guò)不在x軸或y軸上的四邊形的一個(gè)頂點(diǎn),向x軸(或y軸)作垂線,或者把該點(diǎn)與原點(diǎn)連結(jié)起來(lái),分割成一個(gè)梯形(常為直角梯形)和一些三角形的面積之和(或差),或幾個(gè)基本模型的三角形面積的`和(差)

  3.“兩個(gè)三角形相似”的問(wèn)題:

  4.“某函數(shù)圖象上是否存在一點(diǎn),使之與另兩個(gè)定點(diǎn)構(gòu)成等腰三角形”的問(wèn)題:

  首先弄清題中是否規(guī)定了哪個(gè)點(diǎn)為等腰三角形的頂點(diǎn)。(若某邊底,則只有一種情況;若某邊為腰,有兩種情況;若只說(shuō)該三點(diǎn)構(gòu)成等腰三角形,則有三種情況)。先借助于動(dòng)點(diǎn)所在圖象的解析式,表示出動(dòng)點(diǎn)的坐標(biāo)(一母示),按分類(lèi)的情況,分別利用相應(yīng)類(lèi)別下兩腰相等,使用兩點(diǎn)間的距離公式,建立方程。解出此方程,即可求出動(dòng)點(diǎn)的橫坐標(biāo),再借助動(dòng)點(diǎn)所在圖象的函數(shù)關(guān)系式,可求出動(dòng)點(diǎn)縱坐標(biāo),注意去掉不合題意的點(diǎn)(就是不能構(gòu)成三角形這個(gè)題意)。

數(shù)學(xué)解題方法4

  1高中數(shù)學(xué)解題技巧歸納與總結(jié)

 、俦忱}:首先背例題的主要原因就是能夠在考場(chǎng)上遺忘了一些重要公式的時(shí)候,可以用題來(lái)套公式,這樣可以更好的幫助你理解試題,更好的解決試題中遇到的問(wèn)題。

 、谡n前預(yù)習(xí):很多人可能覺(jué)著課前預(yù)習(xí)對(duì)于巧妙解題并沒(méi)有什么影響,實(shí)則不然,課前預(yù)習(xí)主要是讓你了解課內(nèi)出現(xiàn)的一些知識(shí),自然就會(huì)有更多的方法來(lái)解答自己不會(huì)的'題目啦。

 、郾郴A(chǔ):基礎(chǔ)知識(shí)永遠(yuǎn)是解題過(guò)程中遇到的最多的,所以背誦基礎(chǔ)知識(shí)能夠幫助你更好的理解試題。

 、芫C合理解逐一突破:簡(jiǎn)單來(lái)講就是由簡(jiǎn)到難,很多試題都是用簡(jiǎn)單的公式來(lái)變換,這也要求學(xué)生們能夠舉一反三,這樣才能更好的解決問(wèn)題。

  2高中數(shù)學(xué)解題技巧主要有以下幾種方法

  1、配方法:把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。

  2、因式分解法:因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。

  3、換元法:所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

  4、判別式法與韋達(dá)定理:一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac。韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱(chēng)函數(shù)。

數(shù)學(xué)解題方法5

  1.仔細(xì)審題爭(zhēng)取“一遍成”

  拿到試卷后,先要通覽,摸透題情。一是看題量多少,有無(wú)印刷問(wèn)題;二是對(duì)通篇試卷的難易做粗略的了解。

  審題要逐字逐句搞清題意,似曾相識(shí)的題目更要注意異同,從多層面挖掘隱含條件及條件間內(nèi)在聯(lián)系。吃透題意,例如:“兩圓相切”,就包括外切和內(nèi)切,缺一不可。

  中考的考題是由易到難,順利解答幾個(gè)簡(jiǎn)單題目,可以使考生信心倍增。從近年來(lái)中考數(shù)學(xué)卷面來(lái)看,考試時(shí)間很緊張,考生幾乎沒(méi)有時(shí)間檢查,這就要求在答卷時(shí)認(rèn)真準(zhǔn)確,爭(zhēng)取“一遍成”。

  2.遇到難題要敢于暫時(shí)“放棄”

  遇到難題要敢于暫時(shí)“放棄”,不要浪費(fèi)太多時(shí)間。

  一般來(lái)說(shuō),選擇題和填空題,優(yōu)秀考生答每道題的時(shí)間不超過(guò)40秒,差一點(diǎn)的考生不超過(guò)2分鐘。把會(huì)做的題目解答完后,再回頭集中精力解決難題。在答題時(shí)要合理安排時(shí)間,不要在某個(gè)卡住的題上打“持久戰(zhàn)”。

  3.電腦閱卷書(shū)寫(xiě)要工整

  卷面書(shū)寫(xiě)既要速度快,又要整潔、準(zhǔn)確。電腦閱卷要求考生填涂答題卡準(zhǔn)確,字跡工整,大題步驟明晰。

  草稿紙書(shū)寫(xiě)要有規(guī)劃,便于回頭檢查。不少計(jì)算題的失誤,都是因?yàn)闀?shū)寫(xiě)太潦草。正確的做法是:在答題卡上列出詳細(xì)的步驟,不要跳步。只有少量數(shù)學(xué)運(yùn)算才用草稿紙。

  事實(shí)證明:踏實(shí)地完成每步運(yùn)算,解題速度就快;把每個(gè)會(huì)做的題目做對(duì),考分就高。

  4.三大方法答選擇題

  答選擇題可用三大方法。

  排除法:根據(jù)題設(shè)和有關(guān)知識(shí),排除明顯不正確選項(xiàng)。

  特殊值法:根據(jù)題目中的條件,選取某個(gè)符合條件的特殊值或作出特殊圖形進(jìn)行計(jì)算、推理的方法。用特殊值法解題要注意所選取的值要符合條件。

  猜想、測(cè)量的方法:直接觀察或得出結(jié)果。這類(lèi)方法在近年來(lái)的中考題中常被運(yùn)用于探索規(guī)律性的問(wèn)題。

  5.直接法和圖解法答填空題

  直接法和圖解法是填空題的基本解法。

  直接法:根據(jù)題干所給條件,直接計(jì)算、推理,得出正確答案。

  圖解法:根據(jù)題干提供信息,繪出圖形,從而得出正確的'答案。

  填空題雖然多是中低檔題,但不少考生在答題時(shí)往往出現(xiàn)失誤。首先,應(yīng)按題干的要求填空,如一些附加條件,如精確到哪一位,有無(wú)單位。再者應(yīng)認(rèn)真分析題目的隱含條件。填空題不要求寫(xiě)出解題過(guò)程,填錯(cuò)、部分填對(duì)都將計(jì)零分。

  6.注意大題解題過(guò)程

  靠準(zhǔn)確完整的數(shù)學(xué)語(yǔ)言表述,才能避免出現(xiàn)“會(huì)而不對(duì)”“對(duì)而不全”的情況。代數(shù)論證中“以圖代證”,盡管解題思路正確甚至很巧妙,但是由于不善于把“圖形語(yǔ)言”準(zhǔn)確地轉(zhuǎn)譯為“文字語(yǔ)言”,得分會(huì)少得可憐。“心中有數(shù)”卻說(shuō)不清楚,扣分者也不在少數(shù)。

  最后幾題要注意這些點(diǎn):化簡(jiǎn)正確、體現(xiàn)三角函數(shù)值、代值過(guò)程、畫(huà)圖題是否畫(huà)在格點(diǎn)上、畫(huà)向量注意方向、證明步驟一定完整、用到三角函數(shù)一定準(zhǔn)確、分析好圖表、關(guān)鍵性步驟不能缺少、注意有無(wú)相等關(guān)系、注意等腰的分類(lèi)、相似的分類(lèi)等。

數(shù)學(xué)解題方法6

  隨著20xx年考研數(shù)學(xué)大綱的出爐,考生考研數(shù)學(xué)的復(fù)習(xí)也進(jìn)入了關(guān)鍵階段,考研數(shù)學(xué)教研室為了幫助大家更好的備考,在此對(duì)高等數(shù)學(xué)中考查綜合性強(qiáng),所占比重最大的部分積分進(jìn)行重難點(diǎn)分析并介紹基本的解題方法和思路。

  積分是高等數(shù)學(xué)中的一種重要運(yùn)算,主要可以分為一元函數(shù)積分和多元函數(shù)積分兩大類(lèi)。其中,多元函數(shù)積分學(xué)又包含二重積分、三重積分以及積分的應(yīng)用等。一元函數(shù)積分是整個(gè)積分的基礎(chǔ),主要包括不定積分、定積分、變限積分和反常積分等幾類(lèi)常用的積分。其中,不定積分又是基礎(chǔ)中的基礎(chǔ),所有積分的計(jì)算從方法上最終都會(huì)追溯到不定積分的計(jì)算方法上去。所以在考試中這部分計(jì)算的考查當(dāng)然是必不可少的,相關(guān)的計(jì)算方法如分部積分法、換元積分法等也都是考生在做題時(shí)常常會(huì)用到的。關(guān)于這些方法,考生不僅要能夠熟練運(yùn)用,更重要的是要知道它們的適用情況,多加練習(xí)才能在考試中靈活處理。定積分的地位也很重要,除了計(jì)算之外,定積分的性質(zhì)、積分中值定理都是?键c(diǎn),特別要強(qiáng)調(diào)的是定積分的應(yīng)用,涉及到應(yīng)用就需要考生對(duì)概念有一定的理解,能夠從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型進(jìn)行求解,所以,應(yīng)用這一部分著重強(qiáng)調(diào)大家對(duì)概念的理解和把握。剩余兩類(lèi)常見(jiàn)積分中,變上限積分常常與導(dǎo)數(shù)一起進(jìn)行考查,反常積分可以看成是對(duì)變限積分取極限。所以,總的來(lái)說(shuō)這部分知識(shí)難度不大,復(fù)習(xí)時(shí)考生需要在理解的基礎(chǔ)上多加練習(xí)。

  多元函數(shù)積分中,二重積分對(duì)數(shù)一、數(shù)二、數(shù)三都有要求。這部分的計(jì)算要求考生會(huì)交換積分次序、靈活使用直角坐標(biāo)系和極坐標(biāo)系及兩者之間的轉(zhuǎn)換求解積分。此外,計(jì)算時(shí)要注意使用對(duì)稱(chēng)性、奇偶性等性質(zhì)簡(jiǎn)化運(yùn)算。三重積分、兩種曲線積分、兩種曲面積分以及積分的物理學(xué)應(yīng)用等只對(duì)數(shù)一的考生有要求,對(duì)數(shù)二、數(shù)三的考生是不要求的,這一點(diǎn)在大綱上有明確的說(shuō)明。三重積分是二重積分的'一個(gè)引申,從幾何意義上講,它將平面上的積分發(fā)展到了空間上的積分,因此通常與向量和空間解析幾何這部分知識(shí)聯(lián)系起來(lái)考查。主要有三種常用的計(jì)算方法:直角坐標(biāo)系中的先一后二與先二后一法、柱坐標(biāo)解法和球坐標(biāo)法。在應(yīng)用這三種方法解題時(shí),考生一定要能夠畫(huà)出積分區(qū)域、掌握各個(gè)公式中參數(shù)的意義及取值范圍,能夠知道在何種情況下選擇哪種方法進(jìn)行解題,方法的選擇不僅直接影響考生解題的速度、效率,甚至決定了能否計(jì)算出最終的結(jié)果。因此,相對(duì)來(lái)說(shuō)這部分難度較大,考生往往得分較低,在考試中對(duì)學(xué)生的區(qū)分度大,數(shù)一考生在復(fù)習(xí)時(shí)應(yīng)注意多思考、多總結(jié)。

  以上就是我們高等數(shù)學(xué)積分部分的重難點(diǎn)及基本解題方法,可以看出這部分考查的知識(shí)點(diǎn)相對(duì)來(lái)說(shuō)還是比較多的,在考研數(shù)學(xué)中也占據(jù)了非常重要的地位。其實(shí)積分不僅影響考生高等數(shù)學(xué)的成績(jī),對(duì)概率論學(xué)科成績(jī)也有影響,因?yàn)楦怕收撝泻艽笠徊糠诸}目的求解是以積分為工具的。因此,學(xué)好這部分內(nèi)容,不僅僅是高等數(shù)學(xué)取得高分所必須的,更是考研數(shù)學(xué)取得高分所必須的。所以考生一定要引起足夠的重視。

  大綱就是考研的指南針,有了復(fù)習(xí)的方向,再往深往寬了去拓展,才能真正掌握考研知識(shí)。考研在此祝愿各位考研學(xué)子都能名題金榜,笑傲考研。

數(shù)學(xué)解題方法7

  備考方法

  大膽取舍――確保中考數(shù)學(xué)相對(duì)高分

  “有所不為才能有所為,大膽取舍,才能確保中考數(shù)學(xué)相對(duì)高分!贬槍(duì)中考數(shù)學(xué)如何備考,著名數(shù)學(xué)特級(jí)老師說(shuō),這幾個(gè)月的備考一定要有選擇。

  “首先,要進(jìn)行一次全面的基礎(chǔ)內(nèi)容復(fù)習(xí),不能有所遺漏;其次,一定要立足于基礎(chǔ)和難易度適中,太難的可以放棄。在全面復(fù)習(xí)的基礎(chǔ)上,再次把掌握得似懂非懂,知道但又不是很清楚的地方搞清楚。在做題練習(xí)上要學(xué)會(huì)選擇,決不能不加取舍地做題,即便是老師布置的作業(yè),也建議同學(xué)們選擇性地做,已經(jīng)掌握得很好的不要多做,把好像會(huì)做但又不能肯定的`題認(rèn)真做一做,把根本沒(méi)有感覺(jué)的難題放棄不做。千萬(wàn)不要到處去找各個(gè)學(xué)校的考試題來(lái)做,因?yàn)檫@沒(méi)有針對(duì)性,浪費(fèi)時(shí)間和精力!

  做到基本知識(shí)不丟一分

  某外國(guó)語(yǔ)學(xué)校資深中考數(shù)學(xué)老師建議考生在中考數(shù)學(xué)的備考中強(qiáng)化知識(shí)網(wǎng)絡(luò)的梳理,并熟練掌握中考考綱要求的知識(shí)點(diǎn)。

  “首先要梳理知識(shí)網(wǎng)絡(luò),思路清晰知己知彼。思考中學(xué)數(shù)學(xué)學(xué)了什么,教材在排版上有什么規(guī)律,琢磨這兩個(gè)問(wèn)題其實(shí)就是要梳理好知識(shí)網(wǎng)絡(luò),對(duì)知識(shí)做到心中有譜。”他說(shuō),“其次要掌握數(shù)學(xué)考綱,對(duì)考試心中有譜。掌握今年中考數(shù)學(xué)的考綱,用考綱來(lái)統(tǒng)領(lǐng)知識(shí)大綱,掌握好必要的基礎(chǔ)知識(shí)和過(guò)好基本的計(jì)算關(guān),做到基本知識(shí)不丟一分,那就離做好中考數(shù)學(xué)的答卷又近了一步。根據(jù)考綱和自己的實(shí)際情況來(lái)側(cè)重復(fù)習(xí),也能提高有限時(shí)間的利用效率!

  做好中考數(shù)學(xué)的最后沖刺

  廣州中考研究中心老師表示,距離中考越來(lái)越近,一方面需按照學(xué)校的復(fù)習(xí)進(jìn)度正常學(xué)習(xí),另一方面由于每個(gè)人學(xué)習(xí)情況不一樣,自己還需進(jìn)行知識(shí)點(diǎn)和丟分題型的雙重查漏補(bǔ)缺,找準(zhǔn)短板,準(zhǔn)確修復(fù)。

  壓軸題堅(jiān)持每天一道,并及時(shí)總結(jié)方法,錯(cuò)題本就發(fā)揮作用了。最后每周練習(xí)一套中考模擬卷,及時(shí)總結(jié)考試問(wèn)題。我們做題的原則是先搞懂搞透錯(cuò)題,再做新題。如果沒(méi)有時(shí)間做新題,多花時(shí)間思考、沉淀錯(cuò)題是更有效的學(xué)習(xí)方法。

  中考是一場(chǎng)選拔性的考試,緊張是難免的,只要不過(guò)度緊張,適度緊張也是必要的,而且緊張的不是你一個(gè)人,大家都緊張。最后要明白決定中考成敗的不是壓軸題而是簡(jiǎn)單題,千萬(wàn)不要在難題上不舍得,做到會(huì)做的題不丟分就好,這就需要你平時(shí)做題專(zhuān)注用心。

  平時(shí)養(yǎng)成好的答題習(xí)慣

  練兵千日,用在一時(shí),關(guān)于中考應(yīng)考技巧有幾點(diǎn)做法:解題習(xí)慣要端正,由于是電腦閱卷,所以平時(shí)答題時(shí)就養(yǎng)成左對(duì)齊按列寫(xiě)的答題習(xí)慣;閱題習(xí)慣的養(yǎng)成,中考都會(huì)提前發(fā)卷,考生可利用這段時(shí)間,將試卷瀏覽一遍,大致了解題量、題型,了解試題的難易度,做到心中有數(shù),通覽全卷,把握全局。答題習(xí)慣上,先易后難,合理支配答題時(shí)間。進(jìn)入考場(chǎng)后考生特別緊張,可輕拍幾下額頭,做幾個(gè)深呼吸,緊張的情緒就會(huì)得到緩解。

數(shù)學(xué)解題方法8

  數(shù)學(xué)學(xué)習(xí)有自身的規(guī)律,許多數(shù)學(xué)問(wèn)題的解決方法也是有規(guī)律可尋的。作為學(xué)業(yè)考試,主要考查學(xué)生對(duì)初中數(shù)學(xué)中的一些基本概念、基本方法的掌握,也即主要考查一些數(shù)學(xué)的通性通法,因此平時(shí)切忌不動(dòng)腦筋,靠“多”做題目,達(dá)到掌握的目的。多做題目固然有好處,可以做到見(jiàn)多識(shí)廣,但由于學(xué)生學(xué)習(xí)的時(shí)間是個(gè)有限的常數(shù),而且在這有限的時(shí)間內(nèi)還要學(xué)習(xí)其他許多知識(shí),因此單靠盲目地多做練習(xí),達(dá)到熟能生巧的程度,看來(lái)這條路是行不通的,我們要考慮的是如何提高學(xué)習(xí)的效率,為此我們一定要注意經(jīng)常整理解決常見(jiàn)問(wèn)題的基本方法。比如對(duì)于幾何的證明題,我們要學(xué)會(huì)用分析的方法來(lái)思考問(wèn)題:

  已知,AD是△ABC的角平分線,BD是BE與BA的比例中項(xiàng),求證:AD是AE與AC的比例中項(xiàng)。

  分析:根據(jù)已知條件可以知道,BD2=BE·BA,進(jìn)一步可以證得△BDE∽△BAD,得到一些對(duì)應(yīng)角相等。而要證明AD是AE與AC的比例中項(xiàng),即要證明AD2=AE·AC。要證明等積式,就是要證明比例式AEAD=ADAC。要證明比例式,可以考慮利用平行線分線段成比例定理或利用相似三角形的性質(zhì)。根據(jù)本題的條件,就是要證明這四條線段所在的三角形相似,即△ADE∽△ACD。證明三角形相似需要兩個(gè)條件,由于∠DAE=∠CAD,因此只需再找一對(duì)角相等或夾這個(gè)角的兩邊對(duì)應(yīng)成比例,首先考慮的是證明兩個(gè)角相等,不行時(shí)再考慮證明夾這個(gè)角的兩邊對(duì)應(yīng)成比例,如∠AED=∠ADC。結(jié)合條件,可以證出∠BED=∠BDA,所以就可得到∠AED=∠ADC,從而證得結(jié)果。

  像這種思考問(wèn)題的方法,隱含著數(shù)學(xué)的化歸思想。在熟練掌握數(shù)學(xué)基本概念的前提下,解決較難問(wèn)題時(shí),我們經(jīng)常采用把問(wèn)題逐步轉(zhuǎn)化成我們熟悉的、已經(jīng)解決的問(wèn)題,最終解決新的問(wèn)題。因此我們要經(jīng)常總結(jié)一些常見(jiàn)問(wèn)題所采用的常見(jiàn)辦法,如證明兩個(gè)角相等,常見(jiàn)的有哪些方法?證明兩條邊相等,常見(jiàn)的有哪些方法?如何證明直線與圓相切?如何求函數(shù)的解析式?二次函數(shù)的圖象與x軸的交點(diǎn)的橫坐標(biāo)與相應(yīng)的一元二次方程的根有什么關(guān)系?等等。然后再通過(guò)適量的練習(xí),達(dá)到熟練掌握方法的.目的。

  數(shù)學(xué)思想是數(shù)學(xué)的精髓,對(duì)數(shù)學(xué)思想方法的考查是中考的一個(gè)重要方面。因此在數(shù)學(xué)學(xué)習(xí)中要充分注重對(duì)數(shù)學(xué)思想的理解。除了上面提到的化歸思想外,初中數(shù)學(xué)中,我們還學(xué)習(xí)過(guò)字母表示數(shù)思想、方程思想、函數(shù)思想、分解組合思想、數(shù)形結(jié)合思想、分類(lèi)討論思想、配方法、換元法、待定系數(shù)法等等。從數(shù)學(xué)思想方法上來(lái)認(rèn)識(shí)解決問(wèn)題的方法,那么就更能提高自己的能力。

  最后,學(xué)生還要注意改善學(xué)習(xí)方式,提高學(xué)習(xí)效率。學(xué)生一般都有這樣一個(gè)習(xí)慣,考試結(jié)束后,或者作業(yè)做完后喜歡交流答案,這表明學(xué)生急需想知道自己的勞動(dòng)成果,這是一件好事,但如果再進(jìn)一步交流一下解題的方法,學(xué)習(xí)效率會(huì)更高。因?yàn)閿?shù)學(xué)題目是大量的,一般學(xué)生是做不完的,不少題目有許多不同的解法,比如兩位學(xué)生的答案一致,但解決問(wèn)題的方法可能不一樣,可能一種是一般的基本的方法,而另一種是根據(jù)這個(gè)問(wèn)題的特征采用的特殊的方法,各有千秋,通過(guò)交流,取長(zhǎng)補(bǔ)短,那么就能共同提高,從而也提高了自己的學(xué)習(xí)效率。

數(shù)學(xué)解題方法9

  1、配方法

  所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。

  因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的.提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

  3、換元法換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。

  我們通常把未知數(shù)或變數(shù)稱(chēng)為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

  4、判別式法與韋達(dá)定理一元二次方程根的判別。

  不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以討論二次方程根的符號(hào),解對(duì)稱(chēng)方程組,都有非常廣泛的應(yīng)用。5、待定系數(shù)法在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

數(shù)學(xué)解題方法10

  邏輯推理

  例1 從代號(hào)為A、B、C、D、E、F六名刑警中挑選若干人執(zhí)行任務(wù)。人選配備要求:

  (1)A、B兩人中至少去1人;

  (2)A、D不能一起去;

  (3)A、E、F三人中派2人去;

  (4)B、C兩人都去或都不去;

  (5)C、D兩人中去1人;

  (6)若D不去,則E也不去。

  應(yīng)派誰(shuí)去?為什么?

  可這樣思考:由條件(1),

  假設(shè)A去B不去,由(2)知D不去,由(5)知C一定去。這樣,則與條件(4)B、C兩人都去或都不去矛盾。

  假設(shè)A、B都去,由(2)知D不去,由(5)知C一定去,由(6)知E不去,由(3)知F一定去。無(wú)矛盾,(4)也符合。

  故應(yīng)由A、B、C、F四人去。

  例2 河邊有四只船,一個(gè)船夫,每只船上標(biāo)有該船到達(dá)對(duì)岸所需的時(shí)間。如果船夫一次劃兩只船過(guò)河,按花費(fèi)時(shí)間多的那只船計(jì)算,全部劃到對(duì)岸至少要用幾分鐘?

  至少要用2+1+10+2+2=17(分鐘)

  例3甲、乙、丙三人和三只熊A、B、C同時(shí)來(lái)到一條河的南岸,都要到北岸去,F(xiàn)在只有一條船,船上只能載兩個(gè)人或兩只熊或一個(gè)人加一只熊,不管什么情況,只要熊比人數(shù)多,熊就會(huì)把人吃掉。人中只有甲,熊中只有A會(huì)劃船,問(wèn)怎樣才能安全渡河?

  這里只給出一種推理方法:

  枚舉法

  把問(wèn)題分為既不重復(fù),也不遺漏的有限種情況,一一列舉問(wèn)題的解答,最后達(dá)到解決整個(gè)問(wèn)題的目的。

  例4 公社每個(gè)村準(zhǔn)備安裝自動(dòng)電話。負(fù)責(zé)電話編碼的雅琴師傅只用了1、2、3三個(gè)數(shù)字,排列了所有不相同的三位數(shù)作電話號(hào)碼,每個(gè)村剛好一個(gè),這個(gè)公社有多少個(gè)村?

  運(yùn)用枚舉法可以很快地排出如下27個(gè)電話號(hào)碼:

  所以該公社有 27(3×9)個(gè)村。

  例5 國(guó)小學(xué)數(shù)學(xué)奧林匹克,第二次(1980年12月)3題:一個(gè)盒中裝有7枚硬幣:2枚1分的,2枚5分的,2枚10分的,1枚25分的。每次取出兩枚,記下它們的`和,然后放回盒中,如此反復(fù)。那么記下的和至多有多少種不同的數(shù)?

  枚舉出兩枚硬幣搭配的所有情況

  共有9種可能的和。

數(shù)學(xué)解題方法11

  填空題是一種只要求寫(xiě)出結(jié)果,不要求寫(xiě)出解答過(guò)程的客觀性,是中的三種常考題型之一,填空題的類(lèi)型一般可分為:完形填空題、多選填空題、條件與結(jié)論開(kāi)放的填空題 高考. 這說(shuō)明了填空題是命題改革的試驗(yàn)田,創(chuàng)新型的填空題將會(huì)不斷出現(xiàn). 數(shù)學(xué)填空題,絕大多數(shù)是計(jì)算型(尤其是推理計(jì)算型)和概念(性質(zhì))判斷型的,應(yīng)答時(shí)必須按規(guī)則進(jìn)行切實(shí)的計(jì)算或者合乎邏輯的推演和判斷.求解填空題的基本策略是要在“準(zhǔn)”、“巧”、“快”上下功夫.常用的有直接法、特殊化法、數(shù)行結(jié)合法、等價(jià)轉(zhuǎn)化法等.

  一、直接法

  這是解填空題的基本方法,它是直接從題設(shè)條件出發(fā)、利用定義、定理、性質(zhì)、公式等,通過(guò)變形、推理、運(yùn)算等過(guò)程,直接得到結(jié)果.

  女生如何學(xué)好高中數(shù)學(xué) 6招提高成績(jī)

  大量事實(shí)和調(diào)查數(shù)據(jù)表明,隨著內(nèi)容的.逐步深化,女生逐漸下降,他們?cè)綄W(xué)越用功,卻越學(xué)越吃力,出現(xiàn)了部分女生嚴(yán)重偏科的現(xiàn)象。因而,對(duì)女生的培養(yǎng)應(yīng)引起重視。

  一、“棄重求輕”,培養(yǎng)

  女生數(shù)學(xué)能力的下降,環(huán)境因素及因素不容忽視。目前社會(huì)、家庭、學(xué)校對(duì)的期望值普遍過(guò)高。而女生性格較為文靜、內(nèi)向,承受能力較差,加上數(shù)學(xué)學(xué)科難度大,因此導(dǎo)致她們的數(shù)學(xué)學(xué)習(xí)興趣淡化,能力下降。因此,要多關(guān)心女生的思想和學(xué)習(xí),經(jīng)常同她們平等交談,了解其思想上、學(xué)習(xí)上存在的問(wèn)題,幫助其分析原因,制定,清除緊張,鼓勵(lì)她們“敢問(wèn)”、&ldquo 高中英語(yǔ);會(huì)問(wèn)”,激發(fā)其學(xué)習(xí)興趣。同時(shí),要求能以積極態(tài)度對(duì)待女生的數(shù)學(xué)學(xué)習(xí),要多鼓勵(lì)少指責(zé),幫助她們棄掉沉重的思想包袱,輕松愉快地投入到數(shù)學(xué)學(xué)習(xí)中;還可以結(jié)合女性成才的事例和現(xiàn)實(shí)生活中的實(shí)例,幫助她們樹(shù)立學(xué)好數(shù)學(xué)的信心。事實(shí)上,女生的情感平穩(wěn)度比較高,只要她們感興趣,就會(huì)克服困難,努力達(dá)到提高數(shù)學(xué)能力的目的。

  二、“開(kāi)門(mén)造車(chē)”,注重

  在方面,女生比較注重基礎(chǔ),學(xué)習(xí)較扎實(shí),喜歡做基礎(chǔ)題,但解綜合題的能力較差,更不愿解難題;女生上課記筆記,時(shí)喜歡看課本和筆記,但忽視上課聽(tīng)講和能力訓(xùn)練;女生注重條理化和規(guī)范化,按部就班,但適應(yīng)性和創(chuàng)新意識(shí)較差。因此,教師要指導(dǎo)女生“開(kāi)門(mén)造車(chē)”,讓她們暴露學(xué)習(xí)中的問(wèn)題,有針對(duì)地指導(dǎo),強(qiáng)化雙基訓(xùn)練,對(duì)綜合能力要求較高的問(wèn)題,指導(dǎo)她們學(xué)會(huì)利用等價(jià)轉(zhuǎn)換、類(lèi)比、化歸等數(shù)學(xué)思想,將問(wèn)題轉(zhuǎn)化為若干基礎(chǔ)問(wèn)題,還可以組織她們學(xué)習(xí)他人的經(jīng)驗(yàn),改進(jìn),逐步提高能力。

  三、“笨鳥(niǎo)先飛”,強(qiáng)化

  女生受生理、心理等因素影響,對(duì)的理解、應(yīng)用能力相對(duì)要差一些,對(duì)問(wèn)題的反應(yīng)速度也慢一些。因此,要提高學(xué)習(xí)過(guò)程中的數(shù)學(xué)能力,課前的預(yù)習(xí)至關(guān)重要。教學(xué)中,要有針對(duì)性地指導(dǎo)女生課前的預(yù)習(xí),可以編制預(yù)習(xí)提綱,對(duì)抽象的概念、邏輯性較強(qiáng)的推理、空間能力及數(shù)形結(jié)合能力要求較高的內(nèi)容,要求通過(guò)預(yù)習(xí)有一定的了解,便于聽(tīng)課時(shí)有的放矢,易于突破難點(diǎn)。認(rèn)真預(yù)習(xí),還可以改變心理狀態(tài),變被動(dòng)學(xué)習(xí)為主動(dòng)參與。因此,要求女生強(qiáng)化課前預(yù)習(xí),“笨鳥(niǎo)先飛”。

  四、“固本扶元”,落實(shí)“雙基”

  女生數(shù)學(xué)能力差,主要表現(xiàn)在對(duì)基本技能的理解、掌握和應(yīng)用上。只有在鞏固基礎(chǔ)知識(shí)和掌握基本技能的前提下,才能提高女生的綜合能力。因此,教師要加強(qiáng)對(duì)舊知識(shí)的復(fù)習(xí)和基本技能的訓(xùn)練,結(jié)合講授新課組織復(fù)習(xí);也可以通過(guò)基礎(chǔ)知識(shí)的訓(xùn)練,使學(xué)生對(duì)已學(xué)的知識(shí)進(jìn)行鞏固和提高,使他們具備學(xué)習(xí)新知識(shí)所必需的基本能力,從而對(duì)新知識(shí)的學(xué)習(xí)和掌握起到促進(jìn)作用。

  五、“揚(yáng)長(zhǎng)補(bǔ)短”,增加自信

  在數(shù)學(xué)學(xué)習(xí)過(guò)程中,女生在運(yùn)算能力方面,規(guī)范性強(qiáng),準(zhǔn)確率高,但運(yùn)算速度偏慢、技巧性不強(qiáng);在邏輯能力方面,善于直接推理、條理性強(qiáng),但間接推理欠缺、方式單一;在空間想象能力方面,直覺(jué)敏捷、表達(dá)準(zhǔn)確,但線面關(guān)系含混、作圖能力差;在應(yīng)用能力方面,“解!蹦芰^強(qiáng),但“建模”能力偏差。因此,教學(xué)中要注意發(fā)揮女生的長(zhǎng)處,增加其自信心,使其有正視挫折的勇氣和戰(zhàn)勝困難的決心。特別要針對(duì)女生的弱點(diǎn)進(jìn)行教學(xué),多講通解通法和常用技巧,注意速度訓(xùn)練,分析問(wèn)題既要“由因?qū)Ч,也要“?zhí)果索因”,暴露過(guò)程,激活思維;注重?cái)?shù)形結(jié)合,適當(dāng)增加直觀教學(xué),訓(xùn)練作圖能力,培養(yǎng);揭示實(shí)際問(wèn)題的空間形式和數(shù)量關(guān)系,培養(yǎng)“建模”能力。

  六、“舉一反三”,提高能力

  “上課能聽(tīng)懂,作業(yè)能完成,就是成績(jī)提不高!边@是高中階段女生共同的“心聲”。由于課堂信息容量小,知識(shí)單一,在的指導(dǎo)下,女生一般能聽(tīng)懂;課后的練習(xí)多是直接應(yīng)用概念套用算法,過(guò)程簡(jiǎn)單且技能技巧要求較低,她們能完成。但因速度和時(shí)間等方面的影響,她們不大注重課后的理解掌握和能力提高。因此,教學(xué)中要編制“套題”(知識(shí)性,技能性)、“類(lèi)題”(基礎(chǔ)類(lèi),綜合類(lèi),方法類(lèi))、“變式題”(變條件,變結(jié)論,變思想,變方法),并對(duì)其中具有代表性的問(wèn)題進(jìn)行詳盡的剖析,起到“舉一反三”、“觸類(lèi)旁通”的作用,這有利于提高女生的數(shù)學(xué)能力。

數(shù)學(xué)解題方法12

  1、簡(jiǎn)單應(yīng)用題:只含有一種基本數(shù)量關(guān)系,或用一步運(yùn)算解答的應(yīng)用題,通常叫做簡(jiǎn)單應(yīng)用題。

  2、解題步驟:

  a.審題理解題意:了解應(yīng)用題的內(nèi)容,知道應(yīng)用題的條件和問(wèn)題。讀題時(shí),不丟字不添字邊讀邊思考,弄明白題中每句話的意思。

  也可以復(fù)述條件和問(wèn)題,幫助理解題意。

  b.選擇算法和列式計(jì)算:這是解答應(yīng)用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問(wèn)題,

  聯(lián)系四則運(yùn)算的含義,分析數(shù)量關(guān)系,確定算法,進(jìn)行解答并標(biāo)明正確的單位名稱(chēng)。

  c.檢驗(yàn):就是根據(jù)應(yīng)用題的條件和問(wèn)題進(jìn)行檢查看所列算式和計(jì)算過(guò)程是否正確,是否符合題意。如果發(fā)現(xiàn)錯(cuò)誤,馬上改正。

  d.答案:根據(jù)計(jì)算的結(jié)果,先口答,逐步過(guò)渡到筆答。

  3、解答加法應(yīng)用題:

  a求總數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。

  b求比一個(gè)數(shù)多幾的數(shù)應(yīng)用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。

  4、解答減法應(yīng)用題:

  a.求剩余的應(yīng)用題:從已知數(shù)中去掉一部分,求剩下的部分。

  b.求兩個(gè)數(shù)相差的多少的.應(yīng)用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。

  c.求比一個(gè)數(shù)少幾的數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。

  5、解答乘法應(yīng)用題:

  a.求相同加數(shù)和的應(yīng)用題:已知相同的加數(shù)和相同加數(shù)的個(gè)數(shù),求總數(shù)。

  b.求一個(gè)數(shù)的幾倍是多少的應(yīng)用題:已知一個(gè)數(shù)是多少,另一個(gè)數(shù)是它的幾倍,求另一個(gè)數(shù)是多少。

  6、解答除法應(yīng)用題:

  a.把一個(gè)數(shù)平均分成幾份,求每一份是多少的應(yīng)用題:已知一個(gè)數(shù)和把這個(gè)數(shù)平均分成幾份的,求每一份是多少。

  b.求一個(gè)數(shù)里包含幾個(gè)另一個(gè)數(shù)的應(yīng)用題:已知一個(gè)數(shù)和每份是多少,求可以分成幾份。

  c.求一個(gè)數(shù)是另一個(gè)數(shù)的的幾倍的應(yīng)用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。

  d.已知一個(gè)數(shù)的幾倍是多少,求這個(gè)數(shù)的應(yīng)用題。

數(shù)學(xué)解題方法13

  提高解數(shù)學(xué)綜合性問(wèn)題的能力是提高高考數(shù)學(xué)成績(jī)的根本保證。解好綜合題對(duì)于那些想考一流大學(xué),并對(duì)數(shù)學(xué)成績(jī)期望值較高的同學(xué)來(lái)說(shuō),是一道生命線,往往成也蕭何敗也蕭何;對(duì)于那些定位在二流大學(xué)的學(xué)生而言,這里可是放手一搏的好地方。

  1.綜合題在高考試卷中的位置與作用:

  數(shù)學(xué)綜合性試題常常是高考試卷中把關(guān)題和壓軸題。在高考中舉足輕重,高考的區(qū)分層次和選拔使命主要靠這類(lèi)題型來(lái)完成預(yù)設(shè)目標(biāo)。目前的高考綜合題已經(jīng)由單純的知識(shí)疊加型轉(zhuǎn)化為知識(shí)、方法和能力綜合型尤其是創(chuàng)新能力型試題。綜合題是高考數(shù)學(xué)試題的精華部分,具有知識(shí)容量大、解題方法多、能力要求高、突顯數(shù)學(xué)思想方法的運(yùn)用以及要求考生具有一定的創(chuàng)新意識(shí)和創(chuàng)新能力等特點(diǎn)。

  2.解綜合性問(wèn)題的三字訣:

  三性:綜合題從題設(shè)到結(jié)論,從題型到內(nèi)容,條件隱蔽,變化多樣,因此就決定了審題思考的復(fù)雜性和解題設(shè)計(jì)的多樣性。在審題思考中,要把握好三性,即:

 。1)目的性:明確解題結(jié)果的終極目標(biāo)和每一步驟分項(xiàng)目標(biāo)。

 。2)準(zhǔn)確性:提高概念把握的準(zhǔn)確性和運(yùn)算的準(zhǔn)確性。

 。3)隱含性:注意題設(shè)條件的隱含性。審題這第一步,不要怕慢,其實(shí)慢中有快,解題方向明確,解題手段合理,這是提高解題速度和準(zhǔn)確性的前提和保證。

  三化:

 。1)問(wèn)題具體化(包括抽象函數(shù)用具有相同性質(zhì)的具體函數(shù)作為代表來(lái)研究,字母用常數(shù)來(lái)代表)。即把題目中所涉及的各種概念或概念之間的關(guān)系具體明確,有時(shí)可畫(huà)表格或圖形,以便于把一般原理、一般規(guī)律應(yīng)用到具體的解題過(guò)程中去。

 。2)問(wèn)題簡(jiǎn)單化。即把綜合問(wèn)題分解為與各相關(guān)知識(shí)相聯(lián)系的簡(jiǎn)單問(wèn)題,把復(fù)雜的形式轉(zhuǎn)化為簡(jiǎn)單的形式。

 。3)問(wèn)題和諧化。即強(qiáng)調(diào)變換問(wèn)題的條件或結(jié)論,使其表現(xiàn)形式符合數(shù)或形內(nèi)部固有的和諧統(tǒng)一的特點(diǎn),或者突出所涉及的各種數(shù)學(xué)對(duì)象之間的知識(shí)聯(lián)系。

  三轉(zhuǎn):

 。1)語(yǔ)言轉(zhuǎn)換能力。每個(gè)數(shù)學(xué)綜合題都是由一些特定的文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言所組成。解綜合題往往需要較強(qiáng)的語(yǔ)言轉(zhuǎn)換能力。還需要有把普通語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)語(yǔ)言的能力。

  (2)概念轉(zhuǎn)換能力:綜合題的轉(zhuǎn)譯常常需要較強(qiáng)的數(shù)學(xué)概念的'轉(zhuǎn)換能力。

 。3)數(shù)形轉(zhuǎn)換能力。解題中的數(shù)形結(jié)合,就是對(duì)題目的條件和結(jié)論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的結(jié)合上找出解題思路。運(yùn)用數(shù)形轉(zhuǎn)換策略要注意特殊性,否則解題會(huì)出現(xiàn)漏洞。

  三思:

 。1)思路:由于綜合題具有知識(shí)容量大,解題方法多,因此,審題時(shí)應(yīng)考慮多種解題思路。

  (2)思想:高考綜合題的設(shè)置往往會(huì)突顯考查數(shù)學(xué)思想方法,解題時(shí)應(yīng)注意數(shù)學(xué)思想方法的運(yùn)用。

 。3)思辯:即在解綜合題時(shí)注意思路的選擇和運(yùn)算方法的選擇。

  三聯(lián):

 。1)聯(lián)系相關(guān)知識(shí),(2)連接相似問(wèn)題,(2)聯(lián)想類(lèi)似方法。

  3.對(duì)平時(shí)綜合練習(xí)的反思:

  平時(shí)做完綜合練習(xí)后,要注重反思這一環(huán)節(jié),注意方法的優(yōu)化。要把解題的過(guò)程抽象形成思維模塊,注意方法的遷移和問(wèn)題的拓展。再最后的自由復(fù)習(xí)階段也可選取部分做過(guò)的綜合卷中的壓軸題進(jìn)行反思,主要研究:審題分析的過(guò)程(如:尋求條件與結(jié)論聯(lián)系,與基礎(chǔ)知識(shí)的聯(lián)系,與平時(shí)基本方法的聯(lián)系)、隱含條件的運(yùn)用、計(jì)算方法及準(zhǔn)確性。

數(shù)學(xué)解題方法14

  1、數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解體思路,使問(wèn)題得到解決。

  2、聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。

  在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡(jiǎn)。

  如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。

  3、分類(lèi)討論的思想:在數(shù)學(xué)中,我們常常需要根據(jù)研究對(duì)象性質(zhì)的.差異,分各種不同情況予以考查;這種分類(lèi)思考的方法,是一種重要的數(shù)學(xué)思想方法,同時(shí)也是一種重要的解題策略。

  4、待定系數(shù)法:當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母得值就可以了。

  為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì)得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問(wèn)題得到解決。

  5、配方法:就是把一個(gè)代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。

  配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問(wèn)題,都有重要的作用。

  6、換元法:在解題過(guò)程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問(wèn)題的一種方法。

  換元法可以把一個(gè)較為復(fù)雜的式子化簡(jiǎn),把問(wèn)題歸結(jié)為比原來(lái)更為基本的問(wèn)題,從而達(dá)到化繁為簡(jiǎn),化難為易的目的。

  7、分析法:在研究或證明一個(gè)命題時(shí),又結(jié)論向已知條件追溯,既從結(jié)論開(kāi)始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;

  則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過(guò)程通常稱(chēng)為“執(zhí)果尋因”

  8、綜合法:在研究或證明命題時(shí),如果推理的方向是從已知條件開(kāi)始,逐步推導(dǎo)得到結(jié)論,這種思維過(guò)程通常稱(chēng)為“由因?qū)Ч?/p>

  9、演繹法:由一般到特殊的推理方法。

  10、歸納法:由一般到特殊的推理方法。

  11、類(lèi)比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個(gè)或兩類(lèi)事物之間;根據(jù)它們的某些屬性相同或相似,推出它們?cè)谄渌麑傩苑矫嬉部赡芟嗤蛳嗨频耐评矸椒ā?/p>

  類(lèi)比法既可能是特殊到特殊,也可能一般到一般的推理。

數(shù)學(xué)解題方法15

  待定系數(shù)法類(lèi)型的解題方法,同學(xué)們還熟悉吧,下面我們來(lái)學(xué)習(xí)。

  待定系數(shù)法

  在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的'形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  以上對(duì)于待定系數(shù)法解題方法的講解,相信可以很好的幫助同學(xué)們對(duì)數(shù)學(xué)題目的解答,同學(xué)們也要努力學(xué)習(xí)。

【數(shù)學(xué)解題方】相關(guān)文章:

數(shù)學(xué)解題方法11-28

【精選】數(shù)學(xué)解題方法11-28

(熱門(mén))數(shù)學(xué)解題方法15篇11-28

中考數(shù)學(xué)的實(shí)用解題技巧02-01

高一數(shù)學(xué)解題套路分享03-11

中考數(shù)學(xué)解題技巧與壓軸題的解法04-12

看我解題絕招作文05-06

高一數(shù)學(xué)關(guān)于幾何中求參數(shù)取值范圍的解題技巧03-15

培養(yǎng)學(xué)生良好的解題習(xí)慣03-22

中考科學(xué)的解題技巧05-17