初二數(shù)學《勾股定理的逆定理》的知識點
在平時的學習中,不管我們學什么,都需要掌握一些知識點,知識點是知識中的最小單位,最具體的內(nèi)容,有時候也叫“考點”。掌握知識點有助于大家更好的學習。下面是小編為大家整理的初二數(shù)學《勾股定理的逆定理》的知識點,歡迎閱讀與收藏。

初二數(shù)學《勾股定理的逆定理》的知識點 1
1.逆定理的內(nèi)容:
如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
說明:(1)勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和與較長邊的平方作比較,若它們相等時,以a,b,c為三邊的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的.三角形是直角三角形,但此時的斜邊是b.
2.利用勾股定理的逆定理判斷一個三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
初二數(shù)學《勾股定理的逆定理》的知識點 2
勾股定理
在任何一個直角三角形(Rt△)中(等腰直角三角形也算在內(nèi)),兩條直角邊的長度的平方和等于斜邊長度的平方,這就叫做勾股定理。即勾的長度的平方加股的長度的平方等于弦的長度的平方。[1]如果用a,b,c分別表示直角三角形的兩條直角邊和斜邊,那么a+b=c.
簡介
勾股定理是余弦定理的一個特例。這個定理在中國又稱為“商高定理”(相傳大禹治水時,就會運用此定理來解決治水中的計算問題),在外國稱為“畢達哥拉斯定理”或者“百牛定理”。(畢達哥拉斯發(fā)現(xiàn)了這個定理后,即斬了百頭牛作慶祝,因此又稱“百牛定理”)。
他們發(fā)現(xiàn)勾股定理的時間都比中國晚(中國是最早發(fā)現(xiàn)這一幾何寶藏的國家)。目前初二學生開始學習,教材的證明方法大多采用趙爽弦圖,證明使用青朱出入圖。
勾股定理是一個基本的幾何定理,是數(shù)形結合的紐帶之一。
直角三角形兩直角邊的平方和等于斜邊的平方。如果用a、b和c分別表示直角三角形的兩直角邊和斜邊,那么a^2+b^2=c^2。
勾股定理內(nèi)容
直角三角形(等腰直角三角形也算在內(nèi))兩直角邊(即“勾”“股”短的為勾,長的.為股)邊長平方和等于斜邊(即“弦”)邊長的平方。
也就是說設直角三角形兩直角邊為a和b,斜邊為c,那么a的平方+b的平方=c的平方a+b=c。
勾股定理現(xiàn)發(fā)現(xiàn)約有500種證明方法,是數(shù)學定理中證明方法最多的定理之一。
中國古代著名數(shù)學家商高說:“若勾三,股四,則弦五!彼挥涗浽诹恕毒耪滤阈g》中。
推廣
1、如果將直角三角形的斜邊看作二維平面上的向量,將兩直角邊看作在平面直角坐標系坐標軸上的投影,則可以從另一個角度考察勾股定理的意義。即,向量長度的平方等于它在其所在空間一組正交基上投影長度的平方之和。
2.勾股定理是余弦定理的特殊情況。
【初二數(shù)學《勾股定理的逆定理》的知識點】相關文章:
初二數(shù)學教案勾股定理的逆定理的內(nèi)容04-28
初二上冊數(shù)學勾股定理及其逆定理知識點總結09-19
勾股定理的逆定理數(shù)學教案05-27
勾股定理的逆定理教學設計(通用10篇)03-15
勾股定理逆定理教學設計(通用7篇)01-28
勾股定理逆定理的教學設計(通用5篇)03-04
初二數(shù)學知識點08-18
初二數(shù)學重要的知識點07-08